
Chapter 11 –
Dependability

1 Chapter 11 Security and Dependability

Topics covered

 Dependability properties
 The system attributes that lead to dependability.

 Availability and reliability
 Systems should be available to deliver service and perform as

expected.

 Safety
 Systems should not behave in an unsafe way.

System dependability

 For many computer-based systems, the most important
system property is the dependability of the system.

 The dependability of a system reflects the user’s degree
of trust in that system. It reflects the extent of the user’s
confidence that it will operate as users expect and that it
will not ‘fail’ in normal use.

 Dependability covers the related systems attributes of
reliability, availability and security. These are all inter-
dependent.

3 Chapter 11 Security and Dependability

Principal dependability properties

4 Chapter 11 Security and Dependability

Principal properties

 Availability
 The probability that the system will be up and running and able

to deliver useful services to users.

 Reliability
 The probability that the system will correctly deliver services as

expected by users.

 Safety
 A judgment of how likely it is that the system will cause damage

to people or its environment.

 Security
 A judgment of how likely it is that the system can resist

accidental or deliberate intrusions.
5 Chapter 11 Security and Dependability

Availability and reliability

 Reliability
 The probability of failure-free system operation over a specified

time in a given environment for a given purpose

 Availability
 The probability that a system, at a point in time, will be

operational and able to deliver the requested services

 Both of these attributes can be expressed quantitatively
e.g. availability of 0.999 means that the system is up and
running for 99.9% of the time.

6 Chapter 11 Security and Dependability

Availability and reliability

 It is sometimes possible to subsume system availability
under system reliability
 Obviously if a system is unavailable it is not delivering the

specified system services.

 However, it is possible to have systems with low reliability
that must be available.
 So long as system failures can be repaired quickly and does not

damage data, some system failures may not be a problem.

 Availability is therefore best considered as a separate
attribute reflecting whether or not the system can deliver
its services.

 Availability takes repair time into account, if the system
has to be taken out of service to repair faults.

7 Chapter 11 Security and Dependability

Perceptions of reliability

 The formal definition of reliability does not always reflect
the user’s perception of a system’s reliability
 The assumptions that are made about the environment where a

system will be used may be incorrect
• Usage of a system in an office environment is likely to be quite

different from usage of the same system in a university environment
 The consequences of system failures affects the perception of

reliability
• Unreliable windscreen wipers in a car may be irrelevant in a dry

climate
• Failures that have serious consequences (such as an engine

breakdown in a car) are given greater weight by users than failures
that are inconvenient

8 Chapter 11 Security and Dependability

Availability perception

 Availability is usually expressed as a percentage of the
time that the system is available to deliver services e.g.
99.95%.

 However, this does not take into account two factors:
 The number of users affected by the service outage. Loss of

service in the middle of the night is less important for many
systems than loss of service during peak usage periods.

 The length of the outage. The longer the outage, the more the
disruption. Several short outages are less likely to be disruptive
than 1 long outage. Long repair times are a particular problem.

Chapter 11 Security and Dependability 9

Reliability terminology

Term Description

Human error or
mistake

Human behavior that results in the introduction of faults into a system. For
example, in the wilderness weather system, a programmer might decide that the
way to compute the time for the next transmission is to add 1 hour to the current
time. This works except when the transmission time is between 23.00 and
midnight (midnight is 00.00 in the 24-hour clock).

System fault A characteristic of a software system that can lead to a system error. The fault is
the inclusion of the code to add 1 hour to the time of the last transmission,
without a check if the time is greater than or equal to 23.00.

System error An erroneous system state that can lead to system behavior that is unexpected
by system users. The value of transmission time is set incorrectly (to 24.XX
rather than 00.XX) when the faulty code is executed.

System failure An event that occurs at some point in time when the system does not deliver a
service as expected by its users. No weather data is transmitted because the
time is invalid.

10 Chapter 11 Security and Dependability

Faults and failures

 Failures are a usually a result of system errors that are
derived from faults in the system

 However, faults do not necessarily result in system
errors
 The erroneous system state resulting from the fault may be

transient and ‘corrected’ before an error arises.
 The faulty code may never be executed.

 Errors do not necessarily lead to system failures
 The error can be corrected by built-in error detection and

recovery
 The failure can be protected against by built-in protection

facilities. These may, for example, protect system resources from
system errors

11 Chapter 11 Security and Dependability

Reliability in use

 Removing X% of the faults in a system will not
necessarily improve the reliability by X%. A study at IBM
showed that removing 60% of product defects resulted in
a 3% improvement in reliability.

 Program defects may be in rarely executed sections of
the code so may never be encountered by users.
Removing these does not affect the perceived reliability.

 Users adapt their behaviour to avoid system features
that may fail for them.

 A program with known faults may therefore still be
perceived as reliable by its users.

12 Chapter 11 Security and Dependability

Reliability achievement

 Fault avoidance
 Development technique are used that either minimise the

possibility of mistakes or trap mistakes before they result in the
introduction of system faults.

 Fault detection and removal
 Verification and validation techniques that increase the

probability of detecting and correcting errors before the system
goes into service are used.

 Fault tolerance
 Run-time techniques are used to ensure that system faults do

not result in system errors and/or that system errors do not lead
to system failures.

13 Chapter 11 Security and Dependability

Safety

 Safety is a property of a system that reflects the system’s
ability to operate, normally or abnormally, without danger
of causing human injury or death and without damage to
the system’s environment.

 It is important to consider software safety as most
devices whose failure is critical now incorporate
software-based control systems.

 Safety requirements are often exclusive requirements
i.e. they exclude undesirable situations rather than
specify required system services. These generate
functional safety requirements.

14 Chapter 11 Security and Dependability

Safety criticality

 Primary safety-critical systems
 Embedded software systems whose failure can cause the

associated hardware to fail and directly threaten people. Example
is the insulin pump control system.

 Secondary safety-critical systems
 Systems whose failure results in faults in other systems, which

can then have safety consequences. For example, the MHC-
PMS is safety-critical as failure may lead to inappropriate
treatment being prescribed.

15 Chapter 11 Security and Dependability

Safety and reliability

 Safety and reliability are related but distinct
 In general, reliability and availability are necessary but not

sufficient conditions for system safety

 Reliability is concerned with conformance to a given
specification and delivery of service

 Safety is concerned with ensuring system cannot cause
damage irrespective of whether or not it conforms to its
specification

16 Chapter 11 Security and Dependability

Unsafe reliable systems

 There may be dormant faults in a system that are
undetected for many years and only rarely arise.

 Specification errors
 If the system specification is incorrect then the system can

behave as specified but still cause an accident.

 Hardware failures generating spurious inputs
 Hard to anticipate in the specification.

 Context-sensitive commands i.e. issuing the right
command at the wrong time
 Often the result of operator error.

17 Chapter 11 Security and Dependability

Safety terminology
Term Definition

Accident (or mishap) An unplanned event or sequence of events which results in human death or injury,
damage to property, or to the environment. An overdose of insulin is an example of an
accident.

Hazard A condition with the potential for causing or contributing to an accident. A failure of the
sensor that measures blood glucose is an example of a hazard.

Damage A measure of the loss resulting from a mishap. Damage can range from many people
being killed as a result of an accident to minor injury or property damage. Damage
resulting from an overdose of insulin could be serious injury or the death of the user of
the insulin pump.

Hazard severity An assessment of the worst possible damage that could result from a particular hazard.
Hazard severity can range from catastrophic, where many people are killed, to minor,
where only minor damage results. When an individual death is a possibility, a
reasonable assessment of hazard severity is ‘very high’.

Hazard probability The probability of the events occurring which create a hazard. Probability values tend to
be arbitrary but range from ‘probable’ (say 1/100 chance of a hazard occurring) to
‘implausible’ (no conceivable situations are likely in which the hazard could occur). The
probability of a sensor failure in the insulin pump that results in an overdose is probably
low.

Risk This is a measure of the probability that the system will cause an accident. The risk is
assessed by considering the hazard probability, the hazard severity, and the probability
that the hazard will lead to an accident. The risk of an insulin overdose is probably
medium to low.

18 Chapter 11 Security and Dependability

Safety achievement

 Hazard avoidance
 The system is designed so that some classes of hazard simply

cannot arise.

 Hazard detection and removal
 The system is designed so that hazards are detected and

removed before they result in an accident.

 Damage limitation
 The system includes protection features that minimise the

damage that may result from an accident.

19 Chapter 11 Security and Dependability

Normal accidents

 Accidents in complex systems rarely have a single cause
as these systems are designed to be resilient to a single
point of failure
 Designing systems so that a single point of failure does not

cause an accident is a fundamental principle of safe systems
design.

 Almost all accidents are a result of combinations of
malfunctions rather than single failures.

 It is probably the case that anticipating all problem
combinations, especially, in software controlled systems
is impossible so achieving complete safety is impossible.
Accidents are inevitable.

20 Chapter 11 Security and Dependability

Chapter 19 – Service-oriented
Architecture

21 Chapter 19 Service-oriented architecture

Web services

 A web service is an instance of a more general notion of
a service:
 “an act or performance offered by one party to another. Although

the process may be tied to a physical product, the performance
is essentially intangible and does not normally result in
ownership of any of the factors of production”.

 The essence of a service, therefore, is that the provision
of the service is independent of the application using the
service.

 Service providers can develop specialized services and
offer these to a range of service users from different
organizations.

22 Chapter 19 Service-oriented architecture

Service-oriented architectures

 A means of developing distributed systems where the
components are stand-alone services

 Services may execute on different computers from
different service providers

 Standard protocols have been developed to support
service communication and information exchange

23 Chapter 19 Service-oriented architecture

Service-oriented architecture

24 Chapter 19 Service-oriented architecture

Benefits of SOA

 Services can be provided locally or outsourced to
external providers

 Services are language-independent

 Investment in legacy systems can be preserved

 Inter-organisational computing is facilitated through
simplified information exchange

25 Chapter 19 Service-oriented architecture

Key standards

 SOAP
 A message exchange standard that

supports service communication

 WSDL (Web Service Description
Language)
 This standard allows a service

interface and its bindings to be
defined

 WS-BPEL
 A standard for workflow languages

used to define service composition

26 Chapter 19 Service-oriented architecture

Services scenario

 An in-car information system provides drivers with
information on weather, road traffic conditions, local
information etc. This is linked to car radio so that
information is delivered as a signal on a specific radio
channel.

 The car is equipped with GPS receiver to discover its
position and, based on that position, the system
accesses a range of information services. Information
may be delivered in the driver’s specified language.

27 Chapter 19 Service-oriented architecture

A service-based, in-car information
system

28 Chapter 19 Service-oriented architecture

Advantage of SOA for this
application
 It is not necessary to decide when the system is

programmed or deployed what service provider should
be used or what specific services should be accessed.
 As the car moves around, the in-car software uses the service

discovery service to find the most appropriate information
service and binds to that.

 Because of the use of a translation service, it can move across
borders and therefore make local information available to people
who don’t speak the local language.

Chapter 19 Service-oriented architecture 29

Service-oriented software
engineering
 Existing approaches to software engineering have to

evolve to reflect the service-oriented approach to
software development
 Service engineering. The development of dependable, reusable

services
• Software development for reuse

 Software development with services. The development of
dependable software where services are the fundamental
components

• Software development with reuse

Chapter 19 Service-oriented architecture 30

Services as reusable components

 A service can be defined as:
 A loosely-coupled, reusable software component that

encapsulates discrete functionality which may be distributed and
programmatically accessed. A web service is a service that is
accessed using standard Internet and XML-based protocols

 A critical distinction between a service and a component
as defined in CBSE is that services are independent
 Services do not have a ‘requires’ interface
 Services rely on message-based communication with messages

expressed in XML

31 Chapter 19 Service-oriented architecture

Chapter 21 - Aspect-oriented
Software Development

32 Chapter 21 Aspect-oriented software
engineering

Aspect-oriented software
development
 An approach to software development based around a

relatively new type of abstraction - an aspect.

 Used in conjunction with other approaches - normally
object-oriented software engineering.

 Aspects encapsulate functionality that cross-cuts and co-
exists with other functionality.

 Aspects include a definition of where they should be
included in a program as well as code implementing the
cross-cutting concern.

33 Chapter 21 Aspect-oriented software
engineering

The separation of concerns

 The principle of separation of concerns states that
software should be organised so that each program
element does one thing and one thing only.

 Each program element should therefore be
understandable without reference to other elements.

 Program abstractions (subroutines, procedures, objects,
etc.) support the separation of concerns.

34 Chapter 21 Aspect-oriented software
engineering

Concerns

 Concerns are not program issues but reflect the system
requirements and the priorities of the system
stakeholders.
 Examples of concerns are performance, security, specific

functionality, etc.

 By reflecting the separation of concerns in a program,
there is clear traceability from requirements to
implementation.

 Core concerns are the functional concerns that relate to
the primary purpose of a system; secondary concerns
are functional concerns that reflect non-functional and
QoS requirements.

35 Chapter 21 Aspect-oriented software
engineering

Stakeholder concerns

 Functional concerns which are related to specific functionality to be
included in a system.

 Quality of service concerns which are related to the non-functional
behaviour of a system.

 Policy concerns which are related to the overall policies that govern
the use of the system.

 System concerns which are related to attributes of the system as a
whole such as its maintainability or its configurability.

 Organisational concerns which are related to organisational goals
and priorities such as producing a system within budget, making use
of existing software assets or maintaining the reputation of an
organisation.

36 Chapter 21 Aspect-oriented software
engineering

Cross-cutting concerns

 Cross-cutting concerns are concerns whose
implementation cuts across a number of program
components.

 This results in problems when changes to the concern
have to be made - the code to be changed is not localised
but is in different places across the system.

 Cross cutting concerns lead to tangling and scattering.

37 Chapter 21 Aspect-oriented software
engineering

Cross-cutting concerns

38 Chapter 21 Aspect-oriented software
engineering

Aspects, join points and pointcuts

 An aspect is an abstraction which implements a concern.
It includes information where it should be included in a
program.

 A join point is a place in a program where an aspect may
be included (woven).

 A pointcut defines where (at which join points) the aspect
will be included in the program.

39 Chapter 21 Aspect-oriented software
engineering

Terminology used in aspect-oriented
software engineering

Term Definition

advice The code implementing a concern.

aspect A program abstraction that defines a cross-cutting
concern. It includes the definition of a pointcut and
the advice associated with that concern.

join point An event in an executing program where the advice
associated with an aspect may be executed.

join point model The set of events that may be referenced in a
pointcut.

pointcut A statement, included in an aspect, that defines the
join points where the associated aspect advice
should be executed.

weaving The incorporation of advice code at the specified join
points by an aspect weaver.

40 Chapter 21 Aspect-oriented software
engineering

AspectJ - join point model

 Call events
 Calls to a method or constructor

 Execution events
 Execution of a method or constructor

 Initialisation events
 Class or object initialisation

 Data events
 Accessing or updating a field

 Exception events
 The handling of an exception

41 Chapter 21 Aspect-oriented software
engineering

Pointcuts

 Identifies the specific events with which advice should be
associated.

 Examples of contexts where advice can be woven into a
program
 Before the execution of a specific method
 After the normal or exceptional return from a method
 When a field in an object is modified

42 Chapter 21 Aspect-oriented software
engineering

An authentication aspect

aspect authentication
{
 before: call (public void update* (..)) // this is a pointcut
 {
 // this is the advice that should be executed when woven into
 // the executing system
 int tries = 0 ;
 string userPassword = Password.Get (tries) ;
 while (tries < 3 && userPassword != thisUser.password ())
 {
 // allow 3 tries to get the password right
 tries = tries + 1 ;
 userPassword = Password.Get (tries) ;
 }
 if (userPassword != thisUser.password ()) then
 //if password wrong, assume user has forgotten to logout
 System.Logout (thisUser.uid) ;
 }
} // authentication

43 Chapter 21 Aspect-oriented software
engineering

Aspect weaving

 Aspect weavers process source code and weave the
aspects into the program at the specified pointcuts.

 Three approaches to aspect weaving
 Source code pre-processing
 Link-time weaving
 Dynamic, execution-time weaving

44 Chapter 21 Aspect-oriented software
engineering

Software engineering with aspects

 Aspects were introduced as a programming concept but,
as the notion of concerns comes from requirements, an
aspect oriented approach can be adopted at all stages in
the system development process.

 The architecture of an aspect-oriented system is based
around a core system plus extensions.

 The core system implements the primary concerns.
Extensions implement secondary and cross-cutting
concerns.

45 Chapter 21 Aspect-oriented software
engineering

	Chapter 11 –�Dependability
	Topics covered
	System dependability
	Principal dependability properties
	Principal properties
	Availability and reliability
	Availability and reliability
	Perceptions of reliability
	Availability perception
	Reliability terminology
	Faults and failures
	Reliability in use
	Reliability achievement
	Safety
	Safety criticality
	Safety and reliability
	Unsafe reliable systems
	Safety terminology
	Safety achievement
	Normal accidents
	Chapter 19 – Service-oriented Architecture
	Web services
	Service-oriented architectures
	Service-oriented architecture
	Benefits of SOA
	Key standards
	Services scenario
	A service-based, in-car information system
	Advantage of SOA for this application
	Service-oriented software engineering
	Services as reusable components
	Chapter 21 - Aspect-oriented Software Development
	Aspect-oriented software development
	The separation of concerns
	Concerns
	Stakeholder concerns
	Cross-cutting concerns
	Cross-cutting concerns
	Aspects, join points and pointcuts
	Terminology used in aspect-oriented software engineering
	AspectJ - join point model
	Pointcuts
	An authentication aspect
	Aspect weaving
	Software engineering with aspects

